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Abstract

An extensive numerical study of the mechanics of the ‘‘wedge-peel test’’ is performed in order to analyze the mode I

steady state debonding of a sandwich structure made of two thin plastically deforming metallic plates bonded with an

adhesive. The constitutive response of the metallic plates is modeled by J2 flow theory, and the behavior of the adhesive

layer is represented with a cohesive zone model characterized by a maximum separation stress and the fracture energy.

A steady-state finite element code accounting for finite rotation has been developed for the analysis of this problem.

Calculations performed with the steady-state formulation are shown to be much faster than simulations involving both

crack initiation and propagation within a standard, non-steady-state code. The goal of this study is to relate the

measurable parameters of the test to the corresponding fracture process zone characteristics for a representative range

of adherent properties and test conditions. An improved beam bending model for the energy release rate is assessed by

comparison with the numerical results. Two procedures are proposed for identifying the cohesive zone parameters from

experimental measurements.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Adhesive bonding; Wedge-peel test; Cohesive zone; Steady-state FEM; Bond toughness

1. Introduction

Adhesive bonding of metallic plates has become a popular joining method in many industrial applica-

tions including the automotive, construction, microelectronics and aeronautics sectors. However, the de-

velopment of the technique is hindered by several limitations as described by Cognard (2000). Among these

limitations is the lack of reliable design criteria for adhesively bonded structures that account for failure of

the joint. This problem is related to two issues. The first difficulty arises when attempting to characterize the

cracking resistance of adhesive bonds experimentally. It is difficult to develop mechanical tests from which
meaningful adhesive fracture properties can be extracted. An understanding of the intrinsic material
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properties is needed to allow for the comparison of different adhesives and surface treatments. The second

problem is related to the prediction of failure in bonded structures. Due to the wide range of constraints that

can be induced by the substrates, depending on the geometry and loading configuration, the toughness of

the joints has to be measured using a test adapted for the foreseen application. These difficulties have arisen
due to the lack of adequate predictive fracture models that can assess the integrity of adhesive joints. For

instance, linear elastic fracture mechanics leads to inaccurate predictions when plastic deformation occurs

in the adherents. Moreover, all existing analytic non-linear fracture mechanics models also break down

when the amount of plasticity within the adhesive bond is extensive.

The need for improved mechanical description of testing techniques, in particular when debonding is

accompanied by plastic deformation of the adherents, is complemented by the need to develop models for

the transfer of laboratory test results to the design of real structures. This study focuses on the first of theses

two aspects of the problem with detailed analyses of the wedge-peel test using a fracture process zone to
model the adhesive. Following previous investigations by Thouless et al. (1998) and Yang et al. (1999)

based on a similar methodology, this work aims at relating the measurable parameters of the test to the

corresponding fracture process zone characteristics for a representative range of adherent properties and

test conditions.

In the wedge-peel test, two bonded metal plates are separated by means of a wedge inserted along the

interface (Fig. 1). The wedge imposes a well-defined separation of the plates. If the plate thickness, h, is thin
enough and the yield stress, r0, is small enough then plastic bending of the adherents occurs during the

failure of the adhesive bond. Kim and Kim (1988) and Kim and Aravas (1988) have derived the relation
between the bond toughness, C0, and the critical values of these parameters that are needed to induce plastic

bending during debonding:

r0
E

6 3
C0

r0h
ð1Þ

where E is theYoung�s modulus of the adherents.
In order to model the wedge-peel test, and to reduce the number of relevant fracture parameters, a so

called ‘‘top-down’’ (Hutchinson and Evans, 2000) approach to fracture based on cohesive zone surfaces has

Fig. 1. Geometry of the wedge-peel test.
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been adopted (Needleman, 1987; Tvergaard and Hutchinson, 1992). Applications of this approach to

adhesive bonding have already been carried out for a number of problems (Tvergaard and Hutchinson,

1994, 1996; Yang et al., 1999; Mohammed and Liechti, 2000). Generally, these studies model the entire

crack initiation and growth process within a standard finite element framework. In this work the cohesive
zone is implemented within a steady-state finite element formulation (Dean and Hutchinson 1980; Wei and

Hutchinson, 1997). This type of formulation is very efficient in terms of accuracy and speed, allowing for a

systematic study of the influence of the parameters involved in the wedge-peel test. The relevant variables

that will be investigated in this work are the mechanical properties of the substrate, the fracture process

zone parameters describing the adhesive and the geometric characteristics of the test specimen.

In Section 2, the shape of the cohesive zone law is described. In Section 3, the steady-state FEM model is

validated with a convergence study and by comparison with results obtained by similar simulations carried

out on a non-steady-state commercial FEM code. A comprehensive study about the effects of the different
test parameters on the resulting crack length and residual radius of curvature of the adherents is performed

(no experimental result is presented in this paper). A simple beam bending model is also assessed through

comparison with the FEM numerical method. Finally, two new calibration methods for identifying the

cohesive zone parameters from experimental results are described.

2. Numerical model for steady state wedge-peel test

2.1. The interface traction-separation law

The entire adhesive layer is modeled as an interface traction-separation law that relates the normal

traction on the crack plane, r, to the interface opening displacement, d. Since the entire adhesive layer is
represented by the cohesive zone, both the failure process in the adhesive and the elasto-plastic deformation
in the bulk of the adhesive are embodied in the traction-separation law as shown on Fig. 2.

The rate independent traction-separation law proposed by Tvergaard and Hutchinson (1992) with the

form depicted on Fig. 2 has been chosen for this investigation. The two relevant quantities that characterize

the fracture process zone are the peak stress rp and the area under the curve (C0), which represents the

fracture energy of the joint. As discussed by Tvergaard and Hutchinson (1992, 1994), the shape parameters

Fig. 2. The fracture process traction-separation law where dc is the maximum opening displacement, rp is the peak stress and k1 and k2
are shape parameters.
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k1 and k2 are of secondary importance, and they will be taken to be equal to 0.15 and 0.5 for the remainder
of this study. Note that once the maximum opening displacement dc, the peak stress rp, and the shape

parameters k1 and k2 are chosen, C0 can be obtained from

C0 ¼ rpdc 1

�
� k1 þ k2

2

�
: ð2Þ

2.2. Model parameters

The adherents of thickness h are modeled using isotropic elastic-plastic, rate independent J2 flow theory

with uniaxial tension behavior given by

r ¼
Ee ðr6 r0Þ

r0
ðr0=EÞn

en ðr > r0Þ

(
ð3Þ

where E is the Young�s modulus, r0 is the yield strength and n is the strain hardening exponent. The

Poisson�s ratio, m, is always taken equal to 0.3 in this study. The behavior of the adhesive layer is modeled
by the traction-separation law presented in the previous subsection, and is characterized by C0 and rp.
Within the finite element calculations, the radius of curvature of the plastically deformed adherents, R, is

computed as illustrated in Fig. 3. The crack length is the distance between the crack tip (i.e. the position

where the crack opening is equal to dc) and the wedge (i.e. the location of the applied displacement

boundary condition).

The wedge-peel test system of Fig. 3 can be described by the following parameters: E, m, r0, n, h (ad-
herent); C0, rp (adhesive layer) and D (height of the wedge). Dimensional analysis leads to a normalization

of the radius of curvature R and crack length a by the substrate thickness h. These quantities are likely to be
measured during an experiment and are functions of the following dimensionless parameters

R
h
¼ F1

r0
E
; n; m;

C0

r0h
;
rp
r0

;
D
h

� �
;

a
h
¼ F2

r0
E
; n; m;

C0

r0h
;
rp
r0

;
D
h

� �
: ð4Þ
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Fig. 3. FEM mesh used for modeling the wedge-peel test with the steady-state framework.
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2.3. Numerical procedure

A linear kinematics finite element formulation for the study of steady state crack propagation in elasto-

plastic materials was first applied by Dean and Hutchinson (1980) and later implemented by several other
authors (e.g. Wei and Hutchinson, 1997). This formulation has also been applied to rate dependent fracture

of epoxy by Landis et al. (2000). The steady state FE method is based on finding an equilibrium solution for

the displacements based on a previous approximate distribution of plastic strains and then integrating the

plasticity laws along streamlines to determine new approximations for stresses and plastic strains. This

procedure is then repeated until convergence is achieved.

Unfortunately, for the analysis of the wedge-peel test the linear kinematics formulation is not sufficient.

If we assume that the sliding between the wedge and the plates is frictionless, then, under steady state

conditions, the critical energy release rate for the specimen is equal to the force per unit length required to
push the wedge in the direction of crack propagation. If one attempts to analyze this problem with a linear

kinematics formulation, then the force that the wedge applies to the plates can only be perpendicular to the

crack extension plane and there is no driving force available for crack propagation. Hence, at the very

minimum, the problem requires a large rotation formulation. The variational principle for such problems is

written as followsZ
V
Sijdeij dV ¼

Z
S
tidui dS ð5Þ

where V is the volume of the body in the reference configuration, S is its surface, Sij are the components of
the second Piola–Kirckhoff stress tensor, ti are the components of the traction vector applied to the

boundary, ui are the components of the total displacement vector, and eij are the components of the Green–
Lagrange strain tensor given in terms of displacement gradients as

eij ¼ 1
2
ðui;j þ uj;i þ uk;iuk;jÞ: ð6Þ

The iterative procedure used to solve for the distribution of plastic strain is based on (5), and assumes small
strains such that eij can be additively decomposed into elastic and plastic parts. Then, the constitutive law
for the second Piola–Kirckhoff stress is given as

Sij ¼ Cijklðekl � epklÞ ð7Þ

where Cijkl are the components of the elastic stiffness tensor that can be written in terms of E and m for
isotropic materials, and epij is the plastic part of the strain. Note that large rotations are accounted for. The
plastic strains are determined by J2 flow theory. Within a spherical yield surface given by 3S0

ijS
0
ij=2� r20 ¼ 0,

where S0
ij is the deviatoric part of Sij, the increments of plastic strain are zero. However, when the stress state

is on the yield surface and the load increment is directed outward from the surface, plastic strains are given

in incremental form as

_eepij ¼
3

2
_eep
S0
ij

S
ð8Þ

where S ¼ ð3=2S0
ijS

0
ijÞ

1=2
is the effective stress, and _eep ¼ ð2=3 _eepij _eepijÞ

1=2
is the effective plastic strain increment. A

power law hardening rule derived from Eq. (3) is used to relate the effective stress to the effective plastic

strain as

S
r0

� �1=n

� S
r0

¼ Eep

r0
ð9Þ

where ep ¼
R
_eep dt is the accumulated effective plastic strain. In a manner analogous to decomposing

the strain into elastic and plastic parts, the crack opening displacement is decomposed into a linear and a
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non-linear part. The primary purpose of this decomposition is to facilitate the numerical computations.

Hence the variation of the tensile stress t follows the cohesive surface constitutive law depicted in Fig. 2 as

T ¼ jðd � dpÞ ð10Þ

where j is the initial slope of the traction-separation law and dp represents the non-linear or plastic part of
the opening displacement. Note that dp must be carefully defined at each portion of the traction-separation
curve since discontinuities in the slope exist, and furthermore, dp ¼ 0 in the initial linear part of the curve.

The iterative procedure used to determine the distribution of plastic strains is analogous to that used for

the linear kinematics formulation and is written asZ
V

deijCijkl
nþ1ekl dV þ

Z
Sc

du1j nþ1ddS ¼
Z
V

deijCijkl
nepkl dV þ

Z
Sc

du1j ndp dS þ
Z
S
tidui dS: ð11Þ

Here nþ1eij and nþ1d are the strain and crack opening displacement computed at the nþ 1th iteration and nepij
and ndp are the plastic strain and plastic part of the crack opening displacement computed at the previous,
i.e. the nth iteration. Then, V is the volume of the material in the reference configuration, Sc is the cohesive
surface ahead of the crack tip, and S is the external surface in the reference configuration where tractions or
displacements are applied. The integrals on the left side of Eq. (11) form the stiffness matrix and vector of

unknown displacements at the nþ 1th iteration. The surface integrals over Sc account for the cohesive
tractions ahead of the crack tip. The volume integral on the right hand side can be interpreted as a body

force due to plastic strains. In order to alleviate convergence problems associated with the cohesive zone
elements, an optimal lumping procedure (Gaudenzi and Bathe, 1995) was used to perform the cohesive

surface integrations.

The solution procedure is described as follows. During a given step of the procedure the plastic strains

are known from the previous step and fixed. Eq. (11) then defines a set of non-linear finite element

equations that must be solved with a Newton–Raphson method. Let us call this the equilibrium iteration.

Note again that during the equilibrium iterations the plastic strain distributions do not change. Once the

equilibrium iterations have converged to a solution for the given distribution of plastic strains, a new plastic

strain distribution is approximated by integrating the plasticity law, Eq. (8), along streamlines defined by a
constant distance above or below the crack plane. Let us call this the plasticity iteration. Hence, for each

plasticity iteration there are multiple equilibrium iterations. Then, the entire computation is complete when

the distributions of plastic strains converge.

The FEM model for the wedge-peel test is illustrated in Fig. 3. Since the test is symmetric about the crack

plane, only half of the specimen needs to be analyzed. Plane strain conditions are assumed as the width of

the substrate is much larger than its thickness h and thus any three-dimensional effects such as anticlastic
bending are neglected. The crack is assumed to have propagated a sufficient distance such that steady state

conditions prevail for the entire structure. The wedge is modeled with a fixed displacement boundary
condition of magnitude D=2h above the plane of symmetry. Appropriate boundary conditions have been
imposed on the right hand side of the structure as shown in Fig. 3 in order to prevent a rigid body motion.

A mesh convergence study has been carried out to ensure accuracy. The mesh was particularly refined at the

point of contact of the wedge and at the crack tip.

3. Numerical results of the steady state wedge-peel test model

3.1. Validation and comparison with standard finite element formulation

Prior to initiating the parametric study of the wedge-peel test, a mesh convergence analysis was per-
formed. Results obtained using the mesh illustrated in Fig. 3, with refinement near the crack tip and at the
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contact point of the wedge, were found to be in good agreement with convergent results from a uniformly

refined mesh. As a final validation, results from the steady-state formulation were compared to simulations

involving both crack initiation and growth performed with the non-steady-state FE program ABAQUS

version 5.8 (1997), Ferracin et al. (2000). Results from the two methods for the radius of curvature of the
deformed adherents were in agreement to within 10%. However, the steady state formulation was more

than 20 times faster than the standard formulation facilitating the extensive parametric study of the wedge-

peel test.

3.2. Results of the parametric study

The following results illustrate the dependence of the normalized crack length and radius of curvature on

the dimensionless parameters appearing in Eq. (4). The results will be presented for realistic ranges of the

parameters, i.e. for typical metal/adhesive bonds. The bond toughness C0=r0h was chosen to range from

0.001 to 0.1. Normalized peak stress values, rp=r0, greater than 1.0 have not been studied due to the

relatively low strength of adhesives in comparison to the metal adherents. Values of r0=E ¼ 0:001, 0.003,
0.01 were investigated with 0.001 typical of low carbon steel or pure aluminum, and 0.01 the upper limit for

structural hardened aluminum or martensitic steel. The hardening exponents, n ¼ 0, 0.1, 0.2 are typical of

structural alloys. The normalized wedge thickness D=h ranged from 0.45 to 5.0. Finally, the normalized

radius of curvature will usually be displayed for values between 10 and 250.

Figs. 4 and 5 (a)–(c) show the variation of the crack length and the radius of curvature as a function of

the normalized bond toughness C0=r0h, with D=h ¼ 1:5 and various values of rp=r0, r0=E and n. As ex-
pected, both R=h and a=h decrease with increasing bond toughness C0=r0h. For very low bond toughness

adhesives, i.e. when the condition of Eq. (1) is not satisfied, plastic bending of the adherents does not occur
such that the results from linear elastic analysis of the wedge test apply. In this case, R=h tends to infinity
and a=h tends to a finite value. Using elastic beam theory and a one parameter energy release rate fracture

criterion, a=h is given by

a
h
¼ 3

16

D
h

� �
r0h
C0

� �
E
r0

� �� 	1=4
: ð12Þ

The present model tends to match Eq. (12) for large rp=r0 and small C0=r0h (Williams and Hadavinia,

2002). This result is expected since, as rp=r0 ! 1 the cohesive zone fracture criterion approaches a single
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Fig. 4. Variation of the crack length as a function of the bond toughness for r0=E ¼ 0:001 and D=h ¼ 1:5.
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parameter critical energy release rate criterion, and as C0=r0h ! 0 the plastic deformation in the adherents
is negligible.

Fig. 5(a)–(c) show the variation of R=h with respect to C0=r0h along with the corresponding values of a=h
for two different hardening exponents. Note that less deformation is required to attain a given magnitude of

stress as strain hardening increases. Hence, for a given value of the peak stress and bond toughness, the

normalized radius and crack length increase as the strain hardening exponent n increases.
Notice on Figs. 4 and 5 that, for some values of the bond toughness, identical crack lengths result from

two different peak stresses and two different states of specimen deformation. This phenomenon, that de-

pends on n and r0=E, arises because lower peak stresses lead to cohesive tractions ahead of the crack tip
that are distributed over a longer distance resulting in a longer effective crack length and therefore different

deformations in the structure.

10

100

0.001 0.01 0.1

σ
p
/σ

0
 = 0.1

σ
p
/σ

0
 = 0.5

σ
p
/σ

0
 = 1.0

Γ
0
 / σ

0
h

R / h

 D / h =  1.5

n = 0

n = 0.2

a/h =  5.8

a/h =  8

a/h =  3.7

a/h =  12

a/h =  3.7

a/h =  5.8

a/h =  8

a/h =  12

10

100

0.01 0.1

σ
p
/σ

0
 = 0.1

σ
p
/σ

0
 = 0.5

σ
p
/σ

0
 = 1.0

R / h

 D / h = 1.5

n = 0

n = 0.2

a/h = 5.8

a/h = 8

a/h = 3.7

a/h = 5.8

a/h = 8

a/h = 3.7

20

40

60

80
100

0.006 0.008 0.01 0.03

σ
p
/σ

0
 = 0.1

σ
p
/σ

0
 = 0.5

σ
p
/σ

0
 = 1.0

R / h

n = 0

Γ
0
 / σ

0
 h

n = 0.2

 D / h =  1.5

a/h =  5.8

a/h =  3.7

a/h =  3.7

Γ
0
 / σ

0
h(a) (b)

(c)

Fig. 5. (a) Variation of the radius of curvature and the crack length as a function of the bond toughness for r0=E ¼ 0:001; the crack
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Fig. 6 displays the effect of r0=E on R=h and a=h as a function of C0=r0h for n ¼ 0:1 and D=h ¼ 1:5. For a
given value of bond toughness, an increase of r0=E causes an increase of R=h. This is due to the elastic

unloading which brings about an increase of the radius of curvature as a result of the decrease of the

Young�s modulus E. An increase of r0=E also causes an increase of the slope of these curves.
The effect of wedge thickness D=h on the relationship between the radius of curvature and crack length

and the bond toughness is studied in Fig. 7 for D=h ¼ 0:45 and 5.0 and r0=E ¼ 0:001. For a given adhesive
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and test specimen geometry, using a thicker wedge increases the crack length and diminishes the radius of

curvature. Yang et al. (1999) have shown that, if the wedge is too small, the deformation of the arms will be

dominated by shear rather than by bending, leading to a smaller curvature of the substrate (i.e. larger

radius of curvature) for a given bond toughness, in agreement with our calculations. The beam bending
theory, to be presented in the next section, which neglects these shear stresses will obviously not account for

this dependence of the curvature on the wedge thickness.

4. Discussion

4.1. Comparison of the numerical simulations with a beam bending model

In this section, a beam bending solution including elastic unloading of the adherents is presented for the

calculation of the bond toughness. The importance of the modeling of the elastic unloading is emphasized.

The differences between this model and the FEM calculations are assessed and correction factors are de-
rived.

By considering (i) steady state conditions, (ii) plastic beam theory and (iii) flow properties described by

Eq. (3), Yang et al. (1999) derived the following relationship between the radius of curvature and the bond

toughness,

C0

r0h
¼ 8a3

3ð1� m2Þ

"
� 8a
nþ 2

2affiffiffi
3

p
� �nþ1

#
r0
E


 �2 R
h
� a

1� m2

"
� 2

nþ 1

2affiffiffi
3

p
� �nþ1

#
r0
E


 �

þ 2n
ðnþ 2Þðnþ 1Þ

hffiffiffi
3

p
R

� �nþ1 E
r0

� �n

ð13Þ

where a ¼ ð1� m2Þ=ð1� m þ m2Þ0:5.
Eq. (13) can be improved upon by taking into account the reduction of the radius of curvature due to

elastic unloading experienced in the adherents once they are no longer in contact with the wedge. This effect
can be evaluated as follows. Let the final radius of curvature of the adherents after debonding be Rf and the
radius of curvature during debonding be Rd. The deformed beam experiences an elastic reversal DRe during
the drop to zero of the bending moment, M , induced at the crack tip by the wedge. If I is the moment of
inertia of the metal adherent and E its Young�s modulus, Rd can be evaluated using

1

Rd

¼ 1

Rf
þ 1

DRe
ð14Þ

with

1

DRe
¼ M

EI
¼

R h
0

rðzÞzdz
EI

: ð15Þ

An analytical solution of this problem in the elastic-perfectly-plastic case was given by Sener (1998). For

power law strain hardening, Eq. (14) is solved iteratively by imposing Rf while DRe is evaluated using (15).
Selected results are shown in Fig. 8 for r0=E ¼ 0:001 and 0.01 and n ¼ 0 and 0.2. For r0=E ¼ 0:001, the
correction for elastic unloading is larger than 10% when Rf is larger than 30 times the substrate thickness.
For r0=E ¼ 0:01, i.e. in a high strength adherent, the correction is larger than 10% when Rf is only 3–4 times
larger than the substrate thickness. Fig. 8 also shows very small dependence of the elastic unloading on the
hardening coefficient n.
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A comparison is now made between the beam model accounting for the elastic unloading and the steady

state FEM predictions. The differences in the results of the two models are due to the approximation of the
beam bending in the first model, which neglects shearing, and to the fracture criteria used in the two

models, which are a critical energy release rate for the beam model and a cohesive zone response for the

FEM calculations.

Fig. 9(a) and (b) compare FEM simulations with the beammodel in terms of the ratio C0;FEM=C0;Beam for a

peak stress rp=r0 ¼ 1, D=h ¼ 1:5, different hardening exponents n and r0=E ¼ 0:001 (a) and 0.01 (b). The
figures show that for given values of n and r0=E, the beammodel always underestimates the bond toughness.

If the bond is characterized by a peak stress smaller than 1, it can be inferred from Fig. 5 that for a given

radius of curvature R, the corresponding C0;FEM will be larger. C0;Beam is of course independent of the peak
stress, and for a given R the ratio C0;Beam=C0;FEM will be smaller with lower peak stresses leading to higher

discrepancies. One possible reason for this discrepancy is that a decrease of the peak stress tends to increase

the departure from the built-in beam assumption and increases the ‘‘root rotation’’ effects at the crack tip

(Williams and Hadavinia, 2002), thus invalidating the approximation made with the beam bending model.

Fig. 10 shows that the agreement between the beam model and the numerical calculations is better for

large wedge thickness D=h. This also agrees with the argument of Yang et al. (1999) that a thicker wedge
leads to smaller shear stress and thus reduces the discrepancy with the beam model that neglects shear

stresses.
For the range of values studied in this work, the beam formulation almost never overestimates the value

of the bond toughness (except large D=h, low rp=r0). The beam model is thus conservative in most cases.

Figs. 9 and 10 can be used to correct the beam model formula, by interpolating between results if necessary.

4.2. Identification of the cohesive zone parameters

The analysis of the wedge-peel test proposed in this paper can be used for experimental evaluation of the

adhesive bond toughness C0 and peak cohesive strength rp when the adherents deform plastically during
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debonding. Plastic deformations lead to a permanent curvature of the substrates Rf=h that can be measured
after completion of the test, and the crack length can also be monitored during the test.
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Chiang and Chai (1994), Daghyani et al. (1995), Yang et al. (1999) and Kafkalidis et al. (2000) have

calibrated C0 based on the measurement of the radius of curvature, while rp was evaluated independently
using a finite element model for calculating the amplitude of traction forces in an adhesive layer. The

procedure to calculate these traction forces follows a method proposed by Daghyani et al. (1995). In their
approach, the adhesive layer is modeled by isotropic plasticity (i.e. J2 flow theory). In the present paper, two

calibration methods of the cohesive parameters are proposed based on two independent experimental

measurements. Two pieces of experimental information are required, either the crack length and the av-

erage radius of curvature, or two radii of curvature obtained from two tests performed on substrates with

different thickness h, or different mechanical properties (r0=E and n).
Fig. 11(a) illustrates the calibration method based on the measurement of the crack length and radius of

curvature (i.e. a=h and R=h). An horizontal line is drawn at the level of the measured radius of curvature
R=h. The intersection with the constant crack length curve that corresponds to the experimental value of
a=h directly gives C0 on the x-axis, while the peak stress has to be evaluated by interpolating between the
‘‘constant rp’’ curves. Only one test is required with this method. However, the experimental determination
of the current steady state crack length is more difficult and less accurate than the measurement of the

radius of curvature.

The calibration method based on the measurement of two radii of curvature for two different substrate

thicknesses is illustrated on Fig. 11(b). The idea is to find the curve for which two abscissa values C0=r0h1
and C0=r0h2 are such that the ratio h2=h1 corresponds to the measured value. On a logarithmic scale, this
procedure is quite straightforward since the ratio h2=h1 corresponds to a constant spacing along the x-axis.
Care must be taken in selecting adherents having exactly the same surface characteristics and mechanical

properties (e.g. by machining the plates from the same bulk material). If the mechanical properties of the

adherents of thickness h1 and h2 are different, as for instance due to a different degree of rolling, the cal-
ibration must be performed with the data corresponding to the relevant r0=E and n values for each

thickness.
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It is important to emphasize that the measurement of the radius of curvature after completion of the test

is much easier to perform than a continuous measurement of the crack length. Thus, if substrates of dif-

ferent thicknesses are available, we recommend the technique using two radii of curvature. Note finally that

a third calibration method can be envisioned based on the measurement of two radii of curvature with two
different wedge heights. The advantage of this method is that the same adherents can be used. However,

careful analysis of Fig. 7 shows that this method is not sufficiently precise, i.e. small errors in the mea-

surement of the radii of curvature will lead to large uncertainties in the identification of C0 and rp.

4.3. Optimization of the test

As mentioned previously, some degree of freedom exists for selecting the properties of the adherents that

will allow for the most accurate experimental calibration. Of course, freedom in the choice of the sub-
strate exists only when failure is cohesive (i.e. within the adhesive layer). In that case, the test measures

the fracture properties of the adhesive layer in a constrained stress state that predominantly depends on the

nature and thickness of the bond. When failure is adhesive (i.e. along the interface), the nature of the

surface (in terms of treatment, roughness, and chemistry) is important and only the substrate thickness can

be modified. Recall that the first rule with the wedge-peel test is to guarantee significant plasticity in the

adherents. In fact, all of the figures presented in this paper show that the radius of curvature and crack

length are more sensitive to the level of peak stress for small radii of curvature, i.e. for large degree of plastic

yielding in the arms, than otherwise. The determination of bond toughness is slightly less sensitive to peak
stress for smaller radii than for large radii.

For the method based on the measurement of two radii of curvature with two different adherent

thicknesses, Fig. 11(b) shows that the quality of the calibration depends on the differences between the

slopes of the R=h versus C0=r0h curves corresponding to different peak stress. In other words, if the curves
of Fig. 11(b) where parallel lines, the calibration would give an infinite number of solutions. The best

compromise is found for low values of r0=E and, less importantly, low strain-hardening exponent n (e.g. a
regular interstitial free steel with r0=E ¼ 0:001).
Concerning the sensitivity of the method based on the measurement of the radius of curvature and crack

length using a single test, Fig. 11(a) indicates that the best situation is encountered when the constant crack

length lines are as close to vertical as possible. Critical analysis of Fig. 5(a)–(c) shows that the best choice

for calibrating both the bond toughness and the peak stress is for high values of n and r0=E (e.g. an under-

aged aluminum of the 7XXX Series or a stainless steel will have these characteristics). Again, a compromise

has to be found in the choice of the most suitable adherent materials.

Finally, Fig. 7 shows that a small wedge thickness is slightly better for both methods of calibration.

However for a given adherent thickness, a thicker wedge gives rise to larger crack lengths, which are more

easily measured.

5. Conclusion

A systematic study of the wedge-peel test has been performed using a steady state finite element method

with the adhesive layer represented by a cohesive zone. The cohesive zone is characterized by an intrinsic

toughness C0 and a maximum strength rp. The adherents are modeled by J2 flow theory. In particular, we

have studied the influence of

ii(i) the adherent mechanical properties r0, E and n,
i(ii) the adhesive fracture properties C0 and rp,
(iii) the wedge height and the adherent thickness,
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on test parameters that can be measured in an experiment. These parameters are

i(i) the permanent radius of curvature of the adherents, and

(ii) the steady state crack length.

Two new calibration methods have been proposed for converting experimental data into cohesive zone

properties. One method makes use of the measured crack length during testing and the measured radius of

curvature of the deformed substrates. The other method uses the measured radii of curvature from tests

performed on assemblies made of substrates having different thicknesses. Owing to the large range of

parameters investigated, the results presented in this paper can be used to infer the bond toughness and

strength of the adhesive layer for most assemblies.

An improved beam solution for the energy release rate incorporating the elastic unloading effects of the
adherents has been proposed and assessed by comparison with the results of the steady-state numerical

model. In particular, it has been shown that, in comparison to the steady-state numerical solution, the beam

model performs best for thick wedges and when the adhesive layer has a high peak stress. In most cir-

cumstances accounting for elastic unloading of the adherents leads to a significant change in the predicted

bond toughness. The results of this paper allow for the estimation of the error made with the beam model

when inferring bond toughness.
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